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ABSTRACT

It is postulated that the human controller acts in a near optimal
manner given his lnherent structural constraints. These constraintsg
are approximated by a time delay. The optimal controller for a
linear plant with a quadratic cost functional which takes into
account this time delay limitation is derived. The optimal
controller contains a model of the plant being controlled plus

linear dynamics operating on the difference between the output

of the real plant and that of the model. A pilot experiment was
performed to test the hypothesis that the human controller is

nearly optimal. Good agreement between human and optimal con-
troller behavior was obtained. The differences between the two
behaviors can be accounted for by assuming a subjective cost
functlonal that the human controller attempts to optimize.
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CHAPTER I

INTRODUCTION

The human controller of dynamlc systems 1is a self édaptive
controller. If he is told the objective of a control task and

the extent to which he has achieved this objective, he will through
training or practice attempt to improve his performance, providedr
he is motivated to do so. It is reasonable, therefore, to-assume -
that a highly-trained human controller will act in a near optimal
.manner, sﬁbject to certalin internal constraints that 1limit the
range of his behavior and also to the extent to which he under-
stands the objective of the control task.

Given the self-optimizing tendency of the human controller it is
productive to look to optimal control theory as a source of, and
~an inspiration for models of human controller behavior. During
the late 1940's and early 1950's attempts were made by Phillips
(Ref. 1) and Elkind (Ref. 2) and others, to use Wiener (Ref. 3)
optimization theory as a basis for models of the human controller
and for predicting human behavior. More recently, with the )
development of modern optimal control theory, (Ref. -4 and 5) there
has been a resurgence of interest in optimal control models for

the human controller. Roig (Ref. 6) and Leonard (Ref. 7) compared
the mean-squared error performance of the human operator with that
of various optimal controllers and found that the human controller
tended to behave in a near optimal manner. Obermeyer and Muckler
(Ref. 8) examined existing manual control data and attempted to
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solve the inverse problem, that i1s, to find the cost-functionmal--- —
‘that the human controller minimized in these manual control
- situations. 1In a later study Obermeyer, Webster and Muckler
. _..(Ref..9) investigated the effects of performance criteria on com-—"""
- pensatory rate control tracking. In a pilot study performed by e
...~ one of us, Miller (Ref. 10), the effects of changes in the cost - =~
—- - functional upon tracking performance was demonstrated, — - - -~ ="
...~ The results of these earlier studies indicate that 1t is reasonable ~
- . to postulate that the human controller tends to behave in a near -
=~ -optimal manner and that optimal control theory provideés an approp-
riate theoretical framework for understanding human controller
behavior. To test this theory, howeVer, it is necessary to use
procedures somewhat different from those normally employed in the
more conventional experimental studies of human controller charac-
teristics. The experimental situation must be constructed so that
it 1is conslstent with the theory. In particular, the input dis- —~——
turbances if noise-like, should be derived by passing white noise
through (preferably) low-order linear filters. The cost functional
-must be. explicitly defined by the experimenter and communicated in
a meaningful way to the subject. Constraints and invariances in
the human controller's characteristics must be identified.
Finally, the optimal controller, the one that will minimize the
cost functional subject to these constraints, must be derived.

Most of the experiments that were performed to develop and test
conventional control models for the human controller were not
designed with these constraints in mind. As a result it is diffi-
cult to use the results obtained from them to test hypotheses
about the optimality of the human controller and the reasons for
his deviations from optimum.. As we begin to understand more about
the optimal behavior of the human controller, it 1s likely to be



Report No. 1532 Bolt Beranek and Newman Inc

possible to use this large body of earlier data, but for the
present it is necessary to perform additional new experiments
specifically designed to probe the question of human controller
optimality.

In this report we discuss the first of a series of experiments on
the application of optimal control theory to manual control
systems. 'In this present study we have investigated, within the
context of a very simple control situation, the extent to which an
optimal control model represents human controller behavior when the
cost functional is a welighted sum of mean-squared error and mean-
squared control action. The principal independent parameter of
this experiment was the relative weighting of mean-squared error
and mean-squared control action. As the first step in the appli-
cation of optimal theory to thisvexperiméntal situation we derive
the optimal controller under the assumption that the input dis-
turbance is integrated white noise and that the human controller's
characteristics include a time delay. The optimal controller
structure that we developed has an internal model for the plant
being controlled, an optimal estimator (predictor) of the state

-of the plant which compensates for the time delay, and a simple"

- amnesic controller operating on the estimated state. The deriva-
tion of the controller is discussed in Chapter II in which we
consider the general problem of an nth order plant and then Bt
specialize it to the first-order plant that was investigated . - .. . . _
experimentally.

In Chapter III we describe a pilot experiment that was performed .. ... ..
to test the optimality of the human controller and the effects of . .
relative weighting of control and error on his performance. In

Chapter IV we present and discuss the results of these experiments.: — =
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An important factor introduced in this discussion is the concept
of the subjective cost functional and we show how the introduction
of a subjective relative welghting accounts for most of the
difference between optimal and human controller behavior.
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CHAPTER 1II

DERIVATION OF THE OPTIMAL CONTROL MODEL FOR
THE HUMAN CONTROLLER

A. INTRODUCTION

We have postulated that, subject to certain constraints, the human
acts as a near optimal controller. 1In this chapter we derive the
optimal control law for the system we have investigated experi-
mentally. This system was a linear, first-order plant perturbed
. by filtered white gaussian noise as shown in Fig. 1. The human
'contfoller's task was to act as a state regulator and to minimize
a cost functional which was the weighted sum of two terms: a
quadratic function of the state, and of the control action. The
relative weighting of these two terms was a parameter of the ex-
periments.

We have assumed that the principal constraint on the human con-
troller's characteristics is a time delay, e_ST. This delay takes
account of the controller's processing time and also approximates
the charaéteristics of the neuromuscular system. We derive the
optimal'control law for filtered white gaussian disturbances for -
" a controller containing such a time delay. We use these results
to predict the human controller’'s characteristics and, in particu-
lar, to predict how his characteristics will depend upon the rela-

tive weighting in the cost functional of the control action.
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B. OPTIMAL CONTROL OF A LINEAR SYSTEM WITH QUADRATIC COST
CRITERIA

_Given a linear system described by the vector differential equa-
tion

X = Ax + Bu (1)
where x 1s the state and u the control, and a cost functional

(- <]

J k'Qx + u'Ruldt, (R>0, Q>0) (2)
0

N

we wish to find the optimal control u(t) which minimizes J sub-

Ject to the initial condition x(0) = Xge

It is shown in Ref. 4 that the optimal control for this situation
is

u*(t) = -R™IB'K (3)

where K is the symmetric positlve definite solution of the Matrix
Riccati Equation:

0 = KA+ A'K + Q - KBR™IB'K (4)

The closed-loop (optimally controlled) system will now obey the
differential equation:

x = (A - BR™IB'K)x, x(0) = X, (5)
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so the optimal trajectory is

-1
x¥(t) e(A.BR K)t X for t>¢

and (6)

(A-BR™IB'K)t

R™IB'Ke x, for t>0

u*(t)

It is also shown in Ref. 4 that the total cost, starting from

initial displacement Xy is

J(xo) = % xo'Kxo . (7)

C. CONTROL OF A LINEAR SYSTEM WITH TIME DELAY

1. Deterministic Case: Initial Disturbance.

We now wish to investigate the system shown in Fig. 1: a
linear plant followed by a time delay of T sec.

The dynamics are again
i(t) = Ax + Bu ; x(0) = x (8)

(o)

and the cost is

<y
"
N s

[[u'Ru + x'Qx]dt, with R>0 and Q>0. (9)
(o]

Now, however, only a delayed version of the state of the plant
integrators (xd(t) = x(t-T)) is available as input information to
the controller. The cost functional may be expressed in an



INITIAL
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FIG.1 CONTROL PROBLEM WITH TIME DELAY
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alternate form by a change 1in variables in the second term of the
integrand; 1™ = t-T:
o

[ [u'Ru + x'3Q x4ldt (10)
o

cy
]
N =

This form is equivalent to Eq. (9) because we assume that the sys-
tem is initially at rest, 1. e., for t<Q the state x(t) and the
control u(t) are uniformly zero. This implies that the output of
the time delay, xd(t), will be uniformly zero for t<T, then take

a step to x at t=T. (T>0)

We place two important constraints on the optimal feedback con-
troller: first, that at time T it has only the information xd(t),
t<T,available to develop a control strategy; in particular, it
does not have available the present state of the integrators, x(T)
merely their state T seconds ago: xd(T) = x(T-T). The second con-
straint we place on the controller 1s that it be realizable, i.e.,
that it cannot respond to an input before that input occurs.

These two constraints insure that the control fesponse u(t) will
be uniformly zero for t<T. (Since xd(t) = Q9 for t<T).

At time T, xd:takes a step such that xd(T) =X - This is suffici-
ent to specify (to whatever strategy is inside the controller)
that the initial disturbance at t=0 was a vector impulse having
value Xy Further, u(t) was uniformly zero for t<T, there were

no other inputs to the system, and (by assumption) the state of
the system at t=0_ (x(t),-T<t<0) was zero.

This yields the result that x(t) = At x, for 0<t<T. Thils is
enough to specify the entire state of the plant at t=T. The
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optimal controller now only needs to find the optimal control
u¥(t), t>T, based on this perfect knowledge of the state of the
system at t=T.

The cost may thus be expressed as

(<)
J* = L[ [u'Ru + x'Q x]dt (11)
T

N

since u(t) and x(t), t<T are completely independent of the control
strategy to be selected. A shift in variables (1=t-T) makes this
problem identical (except for an initial condition) to that dis-
cussed in the previous section (which had no time delay in the
plant). The differential equations:

x(t) = Ax(t) + Bu(t) ; x(0) = eAT XO (12)

and
1 [+~
J = 3 J [u'Ru + x'Qx]dt. (13)
)
The optimal control u¥*(t) will thus be of the same form as the
previous soclution:
~1,,, (A-BR™IB'K)t AT

u¥(t) = ~R "B'Ke e x, for >0 (14)
where K 1s again the positive definite solution of

0 = KA + A'K + Q - KBR™1B'K,
and

u*(t) = 0 for t<T (15)

(A-BR‘iB'K)(t—T)eAT'

-R-lB 'Ke X, for t>7

10
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Given this optimal control input, we can solve for x(t), t>T, by
convolution. The result 1is:

s

0 for t<0
i&t) = < eht x, for 0<t<T (16)

. 1,
e(A—BR B K)(t—T)eAT

x_  for t>7T .
L o z

These responses are shown schematically in Fig. 2.

At this point, the optimal controller 1is specified (honuniquely) by
its input-output characteristic, 1In particular its output is
u*(t) (shown in Fig. 2) whenever its input is xd*(t)(also shown in
Fig. 2).

Two generalizations are possible at this point: first, since the
derivations above and in Ref. 5 hold true for any x , and the in-
put and output of the controller are each linear 1in Xgo then the

desired transfer function from xd(t) to u(t) can be realized by a

linear system whose parameters are independent of X

Second, the plant is time-invariant; if the initial disturbance - ——-- —--
occurs at to rather than t=0, (with the state of the plant being S
uniformly zero for t<t0), then a change of variables results in

our original optimization problem: the optimal responses shown in

FPig. 2 are merely shifted in time by to. This means that the-. ——— —
optimal feedback can be realized by a time-invariant system.

It 1s, of course, not necessary to use a linear time-invariant ..
system to realize the optimal feedback controller; the same trans-
fer could be obtained from any of an infinite number of non-
~linear time-varying systems. However, as long as the controller -~ '~~~ -

11
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u*(t)

t

X o P | '
4. (A-BRTB' K)(E-T)
~Rlg'ke’ e”Txy

>t

.
|
|
}
|
]
* |
X (t) {
A |
eAth :
}
! _npia! -
: e(A BR*B'K)(L-T) eATXo
{
|
|
] @L
T
* *
Xd (L) =X{(t-T)
a Alt-T)
e X0
(A-BR'B'K)L-2T)
e e xo
]
|
i
|
l n
] — t

FIG.2 REPRESENTATIVE RESPONSES OF OPTIMALLY
CONTROLLED PLANT WITH TIME DELAY
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is realizable and at t=T has only knowledge of xd(t),tgi, then
none of these more complicated controllers can yield a cost J
lower than that provided by a linear time-invariant feedback con-
troller. For this reason, we will investigate only controller
realizations in the class of linear, time-invarlant systems.

One such realization is shown in Fig. 3. This controller struc-
ture contains an exact model of the plant to be controlled, in-
cluding the time delay, and is driven by the same input u(t),

The state of the integrators and the observable output of this
model are denoted as %(t) and ;d(t), respectively. A signal
representing the observed difference in the behavior of the plant
and the model of the plant is denoted by 1(t) = x4(t) - %d(t).,
This difference between observed and predicted behavior is
operated on by a finite dimensional linear time-invariant dynami-
cal system (a N-input, N-output lead-lag network) to develop the
eétimate of the present state of the plant integrators, ;(t),to
provide u¥*¥(t). All initial conditions in the controller, both in.
the model and in the finite-dimensional linear system, are uni-
formly zero, 1. e. the controller state is uniformly zero, for t<T.

Note that this process of optimal control may be viewed as twor - -: -

completely separate subprocesses: the first of these is the
. estimation process, which develops an estimate, X, of the present -
-state of the plant integrators, x, by operating on the difference- -
between observed and predicted plant behavior. The second process
is control, developing the optimal control for the plant by matrix
gain operation on the estimate X(t). In fact, this matrix gain_
is exactly the gain which yields the optimal control from the =
true state of the plant when there 1s no time delay.

The behavior of the four quantities x(t), xd(t), i(t) and R(t) is
shown schematically in Fig. 4. UWe note that the estimator X(t)

13
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Xd(1)=X (t-T)

INITIAL
DISTURBANCE:= VECTOR
IMPULSE X, INTEGRATOR
TIME
. " DELAY
X (1) X(t _
178 e~ST
A e
T PLANT T

u(t)

;FINITE DIMENSION LINEAR SYSTEM$

Xdl(t
X d ( .) _@

]
X (1) s S XM TSt
A <
b wooeL oF pLaNT !
CONSTANT
GAIN
% _q -
R1B'K feX M 1 [1s-A]7 [15-a] AT

i i e — —— —— —— — — — S s s ot it st it i it v et i ot rr i imat?

+

%

A=A-BR'B'K

FIG.3 A REALIZATION OF THE OPTIMAL CONTROLLER

(t)=xd-Xd
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remains zero for t<T, but for t>T follows the state exactly where

K(t-—T)X

x(t) =e o (K = A-BR™IB'K).

2. Stochastic Case: White Noise Perturbations.

We now wish to consider the case where the plant is disturbed by

an independent increments (white noise) input. Before doing this,
however, we will generalize the results of the previous section by
permitting the initial disturbance X,
rather than deterministic. In particular,

to be stochastically selected

.E{xo} = 0 ; E{xoxo'} = W>0 (17)

where E 1s an expectation operator over the probability-measure
space of X, and W is positive semi-definite.

The cost functional to be conslidered is

[}

| E{u'Ru+x'Qx} dt. (18)
0

[
n
M)

The integration and expectation operators may be interchanged so
that

0

E {f [u'Ru+x'Qx]dt} = J (19)
o

[
]
)

1

if the integrand of Eqg. (18) is integrable, i. e., J exists, and if
the argument of the expectation operation in Eq. (19) is finite
with probabllity one.

We will constrain the optimal feedback controller to be é member
of the set of linear time-invariant dynamic systems. (Under the

15
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X(t)

A At
€ Xo

5 t
Xd(t) (t-T)
AlL-T
* e
Al(t-2T) AT
: e e Xo
|
|
|
|
! > t
T 2T
L(t)
A
A(t-T)
\e\xo
|
|
|
|
|
{
| > t
T 2T
X(t)
A

eA(t_T)eATXo = X(t) FOR Lt >T

) Bt
T — -
A=A-BRB'K

FIG.4 REPRESENTATIVE BEHAVIOR OF ESTIMATOR
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additional assumption that the disturbance input random variables
are gaussian, this linear time-variant controller can be shown
to be as good as any non-linear or time-varying controller which

is also realizable and operates exclusively on xd(t).)

The control situation is shown in Fig. 5. The disturbance input
is w(t) = xod(t) (a vector-valued impulse),and the feedback con-
troller is constrained to be linear time-invarilant, so the Green's
function or impulse response for the closed-loop system relating
xd(t) to w(t) may be denoted as ¢,(t) and that relating u(t) to
w(t) as ¢,(t):

<o

x (€)= Jo (T)w(t-T) AT ; u(t) = [ o, (T)w(t-T) 4T  (20)

- 00

where
¢1(T) = @2(T) =0 for T<T.
The cost
1 o) 0 '
J = 5 g E{gjw'(t—T1)¢2(T1)R®2(T2)w(t—T2)dT1dT2}

e (21)
+ E{f[w' (t-T)2,"(7,)Q¢,(T,)w(t-T,)dT 4T, }dt
o]

Assuming that the expectation operator will commute with the inner -

double integration, noting that the inner integrand 1s a scalar
and may be written as the trace of a 1x1 matrix, and remembering
that tr(ABC) = tr(BCA) = tr(CAB), the cost may be rewritten

J = %{“{tr££®2| (Tl)R¢2(T2)E{W(t—T2)W' (t—Ti)}dTidT2 (22)

+ trffo1(r,)Q0, (T,)E{w(t-T,)w" (t-T,)dT,dT,}dt

17
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DISTURBANCE
INPUT
- wi(t)
IMPULSE IMPULSE
RESPONSE= RESPONSE — -
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DELAY
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U(t) =_£ o, (T w(t-T)dT

FIG.5 SYSTEM DIAGRAM WHEN CONTROLLER 1S
CONSTRAINED TO BE LINEAR AND TIME INVARIANT
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Substituting
E{w(t—Tz)w'(t-Tl)} = w&(t—T1)6(t—T2),

o0
— _j;_ 1 t
J = 3 gFr[¢2(t)R®2(t) W+ ¢1(t)Qe,(t)Wldt. (23)
Having eliminated all random variables from the cost expression,
we have the same expression to be minimized as we would have in

the following problem:

de s T
X, terministic , X X, W

J = %Af[u'Ru + x'Qx]dt. (24)
)

Note that @1(t), @2(t) have been constrained to répresent Green's
functions indicated in Fig. 5. In particular, ¢1(t) = ¢2(t) = 0
for t<T. This problem was solved in the previous section, and
resulted in the controller of Fig. 3. We have shown that the same
cost functional 1s to be minimized subject to the same constraints
in the stochastic 1nitial disturbance case as in the deterministic
initial disturbance case. The controller of Fig. 3 is thus the
6ptima1 linear time-invarlant controller for either a stochastic
or determinlistic 1initial disturbance.

Now we consider a (white noise) disturbance process W(t) composed

of independent increments, such that

E{w(t)} = 0 ; E{w(t)}w'(t+T)} = W&(T). (25)

19



Report No. 1532 Bolt Beranek and Newman Inc

The cost functional selected 1s

| T
J = 1im > [ E{u'Ru+x'Qx}dt (26)
T+ 2T o
therefore
. J = lim -+ IT{trf?¢'(T JRé_ (T, )W 8§(T,-T,)dT.dT,
Tee 27 o LEAF AR S A 2771791702

(27)
+ trf[ ©(T,)Q0,(T,)WS(T,~T,) dT  dT,}dt

The integrand 1s a constant independent of t, so the operator

;T
lim = [ dt
T+ T o

is the identity operator.
Using the fact that @2(T1) = ¢1(T1) = 0 for T1< o,

(28)
J =

N [

£ t1{, (£)RE, (E)W + 0, (£)Qe, (£)WIdt.

This is exactly the same cost functional seen in the two previous
cases (deterministic and stochastic initial disturbances) and ¢1(t)
and’¢2(t) are under the same constraints. The controller of

Fig. 3 is the optimal linear time-invariant controller for this
stochastic regulator task also.

It can be shown that %(t) is the least-squares (minimum varilance)

estimate of the state of the plant integrators x(t) given xd(T),
T < t. This is done by showing that
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E{[x(t) - &(£)J&'(t)} =0 ,

i.e., that the error in the estimate 1s uncorrelated with the
estimate. If we now make the assumption that the input process
is strongly stationary gaussian white noise, x(t) and R(t) will
also be gaussian random variables (Ref. 11) in which case the
fact that error and estimate are uncorrelated implies that they
are statistically independent. This linear time-invariant
estimator which develops &(t) is then the best of all possible
estimators, i.e. there is no nonlinear or time-varying estimator

which provides a lower variance estimate of x(t).

Thus in the case of white noise perturbation, the optimal controller
~again separates into an estimator, (which 1s the optimal minimum-
variahce estimator when the input noise is gaussian) followed by

a controller gain matrix 1ldentical to that of the optimal

controller when the plant does not contain any time delay.

D. SPECIFIC EXAMPLE: SINGLE INTEGRATOR PLANT WITH TIME DELAY

1. Performance of Optimal Controller

The specific control task evaluated experimentally was compensa-
tory control of a single integrator perturbed by a gaussian white
noise input. The equations were:

. 1 T 2 . .2
x=u ; J=1im — [ E{pu® + x“}dt (29)
T+ 2T o

21



REPORT NO. 1532

GAUSSIAN
WHITE NOISE

wi(t)

| coNTROLLER]

Ut @)}X (t)’. 1/s X(t) oST

BOLT BERANEK & NEWMAN INC

TIME
DELAY

Xd(t) =X (t-T)

X(t)
e-ST
FIRST ORDER
DYNAMICAL SYSTEM
GAIN (LEAD-LAG)
u(t) =1 X S
,\/15 < S+1/q/p <

FIG.6 OPTIMAL CONTROLLER FOR SINGLE
INTEGRATOR WITH TIME DELAY

22

i(t)



Report No. 1532 Bolt Beranek and Newman Inc

The Riccatl equation is thus a scalar relation:
K2
0=1- ° or K = V/p. (30)

* A
The optimal control is thus u(t)= - x(t)/¥p, and the corresponding
structure is shown in Fig. 6.

The steady-state performance may be calculated for
E{w(t)w'(t+T)} = &(T):

T

1im 2~ [ E{u®lat = 3 [] 0, (T)0,(T,)8(T,-T,)dT, 4T,

T+w 2T o 2 —o (31)
1 > 2

== | 9, (t)dt
2 0
and
1 12 1
1im — [ E{x® }at = —ff®1(T1)¢1(T2)G(Tl—TZ)dTldT2
T+ 2T o 2 : (32)

1 ,~2
5 £ ¢1(t)dt

where ¢,(t) and ¢2(t) are the functions shown in Fig. 7. Therefore,

T
1im L [ E(x%}at =T+ 22
T+= 2T o 2 b
and (33)
T
1im + [ E{u®}at = -1
Too 2T o 45
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Eliminating p, we have the optimal trade-off between x2 and u2
— —\-1
2 2
7 T 7t R (34

The performance curﬁe, 53 versus gi » 1s plotted with p as a
2 2

parameter in Fig. 8.

2. Comparison With a.Simple Suboptimal Controller

The transfer function of the entire controller of Fig. 6 is

H(s) = =S . (35)
1+/p s —e~ST

Plots of the magnitude and phase of H(s) for T = .2, a typical
value for the human controller, are shown in Fig. 9. Note that
when p is near unity, a reasonable value H(s) behaves approximately
like a simple gain at low frequencles and another simple gain at
high frequencies. The ésymptotes of the gain are:

-s -1
1im H(s) = 1im T
s+0 s+0 1+/p s - e 5 T+vp
(36)
-5 -1
1im H(s) = 1lim S
s> §> 1+/6 S - e—s /E

H(s) can thus be approximated quite closely both in magnitude and
phase as a lead-lag network with low frequency gain -1/(T + vp),
high frequency gain -1/p, and high frequency pole at s= -2n/T=15.7
for a pof unity or larger.

25
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This suggests an experiment with a very simple suboptimal control:

suppose that instead of the optimal feedback controller, we use
a simple gain. How much worse a_feedback control strategy 1s this,
that is, how is the ;7)2 versus u2/2 tradeoff curve modified?

To compute the new,perfbrmance, let the controller gain be denoted
‘as a, and note that the input-to-error impulse response ¢1(t) now
has transform

e-st
o,(s) = ————— . (37)
1 s + oo~ St

As before,
2 e 2 ,
. 1y o (t)at . (38)
2 2 0

By Parseval's Theorem
e , o du (39)
— T e [ @1(s)¢1(-s)ds = :’-’7 I 5 5 - .
2 2ni ~ie 0 w + 0= 2mw sin wT

This 1s not simply integrable, so we will expand the integrand

in a power seriles in (oT) around the point (aT) = 0 and then
integrate term by term:

2 2
x- _ 1 3(oT) 2
5 = g +aT + 52—+ + ol(ar)<1} (10)
Since u = ax , u:/z = a? x2/2.
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The suboptimal control performance is plotted in comparison with
the optimal in Fig. 10 for T = .2. We see from Fig. 10 that this
simple suboptimal strategy performance converges exactly to that
of the optimal strategy for large p: even for .1 < p < 1 the two
curves are fairly close. However, for p << .1 the curves diverge.
In addition, the simple model is a bad approximation to the
optimal for p << .1, but is reasonably good for larger p.

For part of the analysis‘of the experimental data, we modelled
the human controller as a simple gain plus a time delay and

" found the best value for his equivalent gaih. Given measurements
of the equivalent gain of the human controller for several

values of p, we can determine how he adjusts this equivalent

gain as a function of p. The controller's gain adjustment can
then be compared with the optimal adjustment to determine

how closely he selects the optimal operating point and how
closely he achieves an optimal tradeoff between x2/2 and

u2/2 asbp changes.

Since

J=x%/2 + pu, (41)

the minimization requirement gives
) 2
dJ = d(x")+ p d(u®) = 0 (42)

The slope of tradeoff curve at the operating point is

d(x2)/du2 = ~p (43)
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FIG.11 EQUIVALENT (CROSS-CORRELATION) OPTIMAL GAIN
FOR CONTROLLING THE SINGLE INTEGRATOR PLANT
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Also, d2J>0, so the tradeoff curve must be concave upward at the
operating point, i.e., d2(x2)/d(u2)2 > 0.

To compute the equivalent gain of the human, we will take the
instantaneous cross-correlation between his input (xd) and his
output (u). In terms of Fig. 6,

2
o« = E{ux }/E{x a} (44)

where o is the equivalent or cross correlation gain of the human
controller. If the optimal controller were in the feedback loop,
Eq. (44) would give the following value for the gain:

(e_T//E -1) - % e-T'/a -1

o = : = — (45)
T + /p/2 T + Vp/2

% ~T/VP

This equivalent optimal gain 1s plotted in Fig. 11 as a function
of p.
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CHAPTER III

DESCRIPTIONS OF EXPERIMENT

A. INTRODUCTION

In the previous chapter we developed an optimal control model for
the human controller. We used this model to determine the optimal
equivalent gain as a function of p, the relative welghting of
control u /2 and error Xx /2 and to determine the optimal trade-off
between u /2 and ;5/2 as a function of p. In this chapter we A
describe the experiments that we performed to test this model. In
these experiments we attempted to determine how close to optimal
the human control set his equivalent gain and how close to optimal-
was hls trade-off between u2/2 and x2/2 as the relative wéighting
p was changed. The experlments were of limited scope and in a
sense should be considered to be pllot experiments. Only one
subject was used, but he was very carefully trained in all
conditions.

The experimental control system was a modified compensatory system
with gaussian input disturbance. The block diagram of the system
is in Fig. 12. The principal difference between our control
situation and the conventional compensatory situation was that

the subject was instructed to minimize a cost functional or score
that was the weighted sum of the mean-squared error and of the
mean-squared control movements.
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This meant that, in general, he should have used somewhat smaller
control movements and incurred a greater meari-squared error than

he would have if he were scored on mean-squared error alone. To
help the controller optimize his behavior, he was gilven explicit
feedback of his running score by a "cost circle" display. This

was similar to the fechnique used by Miller (Ref. 10) in a previous
study of the optimality of human controller behavior.

B. APPARATUS

The subject was seated in a small, acoustically insulated'room,
facing an oscilloscope screen and a control stick. The room light
intensity was adjusted to his comfort and then held constant. He
was seated in a dentist's chair with a headrest adjusted so that
his eyes were on a level with the screen and were approximately

- 72 cm. away.

The diameter of the oscilloscope screen was 12 cm. The screen
contained three time-shared signals, so that the display appeared
as shown 1n Fig. 13. The electronic switches which time-shared

the display signals ran at 60 and 30 Hz, so that the entire dis-
play was repeated 30 times per second. Thus the time per display --

frame was 33.3 milliseconds. The frame time was -allocated-in the = =

following manner: 16.7 milliseconds was spent displaying the-error
dot, whose vertical displacement from the center of the screen- - - -.
represented tracking error; 8.3 milliseconds'waszspent~displaying'

a target circle which was 0.5 cm. in diameter and was located at -

the center of the screen; and 8.3 milliseconds was spent display- -~ -
ing a scoring circle. The diameter of the scoring circle was . -
proportional to the subject's instantaneous score processed by a - -
first-order lag filter with a time constant of 2 seconds.
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ERROR
DOT

. SCORING TARGET

CIRCLE CIRCLE

FIG.13 DISPLAY (TARGET CIRCLE FIXED, ERROR DOT
MOVES VERTICALLY, DIAMETER OF SCORING
CIRCLE=2SEC. AVERAGE OF COST (SCORE) RATE.)
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The subject grasped the control device which was an ll-inch long
aluminum stick attached to a Measurement Systems Inc. Model 435
force-sensitive hand control. He manipulated the control with the
fingers of his right hand. The control was oriented so that the
stick was horizontal and could be moved left-right and up-down in
a plane parallel to the oscilloscope screen. Only the up-down
movements controlled the error dot.

The controlled dynamics was a single integrator, calibrated so that
an upward force of 105 dynes (1 Newton) on the stick resulted in -~
an upward velocity of the error dot of 6.4 cm/sec on the screen

This upward force displaced the end of the stick -approximately

0.1 cm.

The input signal was recorded on magnetic tape and consisted of
integrated Gaussian white noise. The input amplitude was adjusted
so that its mean-square was 10 cm2. The procedures by which this
tape was generated are discussed in Appendix'A. On a second

channel of the tape, a control signal was recorded, by means of
which the scoring integrators could be started, stopped, and reset
at the desired times. The input entered the system at the input

to the plant as shown ln Fig. 12. Because it was integrated white -
nolse, this input was equivalent to a white noise disturbance of .
the plant output shown in Fig. 6.

An Electronic Associates Inc. TR-48 analog computer with associated -
peripheral equipment was used to generate the display seen by the ™
subject, to provide the controlled dynamics, and to compute scores
for each run. The score for a run was the weighted sum of the

mean-squared error and the mean-squared stick movement normalized
by dividing by the mean-equared input. The relative weighting for
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the score Was, of course, the same as the weighting used for the
scoring circle. The input, error, and stick movement signals
which occurred during a run were monitored and recorded on magnetic
tape by means of a Technical Measurement Corp. Mnemotron FM

tape recorder.

~C,” EXPERIMENTAL PROCEDURE

The subjJect used was highly-experlenced at various manual control

tasks. He was instructed that he was to carry out a velocity

control compensatory tracking task in such a manner as to minimize
his total score as indicated by the diameter of the scoring circle
on the screen. He was told that his score would consist of a
weighted sum of hls mean-squared stick movement and the mean-
squared error.

Runs were taken in blocks of four. Because of the control signal
recorded on the input tape, the same four 1nput segments were
repeated for each block. This insured that each block was of
exactly the same difficulty, so that scores could be compared from
block to block in order to discover how well the subject was
learning the task. In order to discourage the subject from memor-
izing the input signals, the four input segments were presented

in random order during each block.

'Each of the four runs in a block conslisted of 30 seconds of un-

scored practice and 90 seconds of scoring. At the beginning of
each scored segment, the recorded control signal started the
scoring integrators. At the end of the scored segment, it turned
them off. The experimenter read each score and then reset the
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integrators by means of a switch. The.subject was allowed to rest
approximately one minute between runs in a block and approximately
10 minutes between blocks.

The subject was tralned in the tracking task with three cost funct-
ions whose stick weiéhting coefficients, p, were 0, 0.1, and 1,
respectively. For each of these cases, the subject was trained
until his score stabilized, at which time a data block was run.

The input, error, and stick movement signals were recorded along
with the control level signal which indicated the portion of the
run which was being scored.
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CHAPTER IV

EXPERIMENTAL RESULTS

A. PERFORMANCE SCORES

In Fig. 14 are plots of the scores x2 versus u2 with p as a para-
meter for the optimal controller of Fig. 6, and for the human
controller. The time delay for the optimal controller was chosen
to be 0.2 sec. The human controller results were obtalned from
the eXperiments for values of p = 0, .1 and 1.

The measured points for the human controller lle very close to
the x2 versus u2 trade-off curve for the optimal controller,.
Howéver, it is apparent from the figure that the human controller
did not select the proper operating point to minimize his total
score. In particular, he did not move as large a distance along
the trade-off curve as did the optimal controller. '

B. GAIN ADJUSTMENT

If we assume the suboptimal model consisting of a gain in cascade
with a time delay of 0.2 seconds, rather than the more compléx
optimal controller model of Fig. 6, we can determine the best fit
gain from records of the error and control movements. To find
the best fit linear gain for this model, a regression analysis
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was performed. This analysis consisted of measuring the mean
value of u2(t), xz(t—T), and u(t)x(t-T) over the four runs
recorded when p = .1, and again over the four for p= 1.

Assuming all variables are gaussian, the minimum variance estimate
of the human operator's equivalent gain is

G - U(t)X(t~T) (us)
xz(t—T)

The correlation coefficient between u(t) and x(t-T) is

‘r = u(t)x(t-T) (u7)

\/uz(t) %2 (£-T)

If the same experiment were performed with the optimal controller

replacing the human, we would expect to measure an equivalent

SR (ET 1 - 1/
G = u(t)x t—T) = - 2 (u8)
o R
X2(t~T) T + Vp/2

and a correlation coefficient of

1 - le-T/fp-
P
r, = g
°© -2-'\/1 + 2T/Vp
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A comparison between this optimal equivalent gain and the
measured gain is in Fig. 15. We see that the human had a gain-:
lower than optimal for p = .1 and higher than optimal for

p
p .1and r = .85 for p = 1. These were somewhat lower than
the .98 and .99 that would have been measured with the optimal
controller in the circult.

1. The correlation coefficients obtained were r = .88 for

C. DISCUSSION

There are two reasons for the difference between the behavior of
the optimal controller and of the human controller. First, in
deriving the optimal controller we may have made incorrect
assumptions about the human controller's characteristics. Second,
the human controller's subjective estimates of p may have differed
from the actual values used in the experiment.

Our assumption that the human controller's time delay T was 0.2
second 1s one possible source of dlsagreement between the human
controller and the optimal model. The effect of T‘on the tradeoff
curve is given by Eq. (34) which states that

X2 7 1 42,1
5 = % + 33(5—) (50)

T thus has the effect of translating the tradeoff curve. Since
the experimental points lie almost on the tradeoff curve for the
optimal controller shown in Fig. 14, for which T = 0.2 second, we
may conclude that this value of T is approximately correct. More-
over, changing T would not result in a better agreement between
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-the human controller's operating points and those of the optimal

controller. In particular, a change of T would not account for
the fact that the operating point for the optimal controller moves
much further along the trade-off curve as p changes than did the
operating point for the human controller.

-~ A second assumption that might account for the disagreement is-

- the neglection of the human controller's remnant in developing

the optimal model. But in these experiments’the'remnant consti-

~tuted only a small fraction of the human controller's output.

For p = 1 and .1, the coefficients of linear correlation between
the human controller's output u(t) and his input x(t) were
approximately .85 and .88, respectively. Remnant can be modelled
by adding a small amount of independent noise to the output of

- the optimal model to obtain the response u. This nolse represents
the part of the human operator's response that is uncorrelated

with his input. However, the level of the additive noise is low
and its effect on the u2 versus x2 trade-off curve (Fig. 14)

would be small.

Thus, it seems more reasonable to attribute that difference between
human and optimal controller behavior to the human controller's
misestimation of p, the relative weighting of control and error.

We should not be surprised to find that the human controller's
subjective values of p differ from the actual values. The total
score is not very sensitive to slight variations in the location

of the operating point as long as the operating point remains on
the optimal trade-off curve.
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In fact, the derivative of cost with respect to the operating

point location goes to zero at the optimal location. Since the:
total cost was rather insensitive to operating point location,

the subject would not be highly motivated to find the exact

optimal point, and would have a difficult time learning to locate
it exactly. His performance might have been improved by additional
training, particularly 1f the additional training was given over

a much wider range of p values.

Whatever the reason for this lack of adjustment to p, it appears
that the human operator's performance can be predicted quite well
by a model consisting of the optimal structure with parameters
chosen to optimize a subjective cost functional that differs from
the true one. We can estimate the values of p that the human
‘controller optimized for from Figs. 14 and 15. From the trade-~off
curve of Fig. 14 we can determine the values of p that give oper-
' ating points on the optimal controller's trade-off curve that 1lie
close to the human controller's operating points. Dolng this, we
find that the human controller apparently optimized for p~n.02
rather than the actual value p = 0, for p~.2 rather than p = .1
and for p~v.4 rather than p = 1. From the gain versus p curve of .
Fig. 15 we can simply read off the value of p for which the
equivalent gaih of the optimal controller would be the same as

the measured galn of the human controller. The values of p
obtained by this process are p = .2 and .45.respectively, rather -
than the actual values p = .1 and 1. Thus the two sets of
empirical values of p are in good agreement.
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Thus, our results are most simply explained by assuming a sub-
jective weighting Ps in the cost functional. For completeness we
should also include the remnant in the model for the human con-
troller. The revised model for the human controller would consist

‘of the optimal controller of Fig. 6, with a subjective value of

the parameter p plus a low-level noilse source summed at its output
to account for the remnant.
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CHAPTER V

CONCLUSIONS

In Chapter II we derived the optimal controller for a plant with
quadratic cost functional which takes into account the time delay
limitation of the human operator. This optimal controller con-
tains a model of the plant being controlled, plus linear dynamics
operating on the difference between the real plant output and the
model output.

Such a structure is an excellent model for the human operator.

In our experiment with a first-order plant, the human controller's
trade-off curve between mean-square error and mean-square control
was virtually indistinguishable from the trade-off curve of this
optimal controller. However, the human controller did not operate
at the point of the trade-off curve which would have minimized

his total score. The difference between the operating point and
the optimal controller's operating point can be attributed almost
entirely to the difference between the human controller's subjec-.
tive estimate of p, the relative weighting of control and error . - =
in the cbst functional, and the actual weighting. This suggests -
that the human controller be modelled by the optimal structure
with subjective, rather than actual weightings in the cost
functional. Understanding how the human controller's subjective
weightings are established would appear to be an 1lmportant

problem that deserves considerable attention.
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APPENDIX

GENERATION OF GAUSSIAN INPUT TAPE

1. Sum of N Uniform Random Numbers

A good approximation to a Gaussian distributed random variable
can be obtained by summing a number of uniformly distributed
independent random vériables. This technique was implemented
on the PDP-1 by producing "independent" uniformly distributed
pseudo-random numbers by the power residue method described
below, then summing these uniform humbers in non-overlapping
groups of 31. The approximately Gaussian numbers which
resulted were then D-A converted and recorded on analog

magnetic tape.
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Since the numbers generated by the power residue method have

a uniform distribution between +M and -M, they are zero mean,
If we perform a scaling operation to simplify the arithmetic,
we can equally well imagine these numbers uniformly distributed
between -1 and +1.

The first moment (mean) is still zero, the second moment

(variance) is now 1/3, and the n™ moment is zero for n odd,

1/n+1 for n even.

We will now sum N of these (independent) random numbers and
find the moments of the sum: N
Z = Z
k=1

N N
E(z) =E( 2 X) = = E(X) = ZERO.

k=1 & k=t
E(z°) = NE(XZ) + N(N-1) E2(X) = NE(X?) = N/3
E(z3) = NE(X3) + 3N(N-1) E(X) E(X?) + N(N-1)(N-2) E3(X) = ZERO.
E(z") = NE(X') + 4N(N-1) E(X) E(xX3) + 3nN(N-1) E2(x?)

+ 6N(N-1) (N-2) E2(X) E(X2) + N(N-1)(N-2)(N-3) E”(x)

N, N(N-1) _N® _ oN
5 3 3 15

E(Z°) = ZERO,

- NE(X®) + 15N(N-1) E(X') E(x®) + 15N(N-1)(N-2) E3(x?)

=
N
(02
~—
|

i



In order to compare these moments wlth the moments of a

Gaussian random number, we should scale Z so that it has

unit variance, i.e., define
Zo= yﬁénz. The nth moment

of Z is thus scaled by a factor of
(%) n/?2 :

E(Zz, ) =0

E(z,%) = 1

E(zo3) = 0

E(ZOL‘) =3 - —5—1%

E(2,°) = 0

E(zo6) = 15 - 3—% +—i—§2

If, for example, we choose N = 31,

E(z,) E(z,2) E(z) E(z') E(z))
0 1 0 2.961 0

Whereas the normal Gaussian (G) has moments:

Be) E@G%)  E@3)  EGY)  EGO)
0 1 0 3.0 0

E(2Z,
14 425

5(c?)
15.0
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Thus the sum of 31 uniformly distributed independent random
numbers provides a good approximation to the Gaussian dis-
tribution. As N 1s increased, the moments of Zo converge
exactly to those of the Gaussian varilable, but the convergence
1s hyperbolically slow. (Error decreases as 1/N) Increasing
N to 62 would only increase E(ZOA) to 2.98, so we have
probably reached the point of diminishing returns.

2. Generation of Uniformly Distributed Random Variables

. The technique used to generate uniformly distributed random
~variables between the limits 4+M and -M is described in the

IBM publication, "Random Number Generation and Testing."-é/
The suggested procedure involves solving the equation

b/2

(2 + 3) u, (mod 2°) (1)

il

un+1

uo =1
where lu )are the values of the random variables with

n as an index parameter, b is the blt size of the machine
(18 in the case of the PDP-1).

This simple procedure yields a set of uniformly distributed
random variables between -(217 - 1) and +(217 - 1) with a
period of 216. Unfortunately this period is much too small.
Observe that a random number can be generated by a PDP-1
implementation of equation (1) every 75 usecs. If these numbers
were being generated at highest speed, the series would repeat
every (75 x 10 ) be 216 = 11,915 seconds or about 1/5 cps. This
repetition rate is much too fast in view of our goal to gen-
erate a signal which lcoked "white" at low frequencies.

1. Random Number Generation and Testing, I.B.M. Refefence Manual



Therefore, as an alternative procedure we solved equation (1)
setting b = 36. This made the implementation a little more
difficult but gave a much longer repetition period. Namely,

we used two PDP-1 computer words for up,. Consider uzn the
high order (left half) bits of u, and ur_ the low order (right
half) bits of u . Then equation (1) is solved in the following

mannexr:

_ 18 o
u, = uzn(z ) + urn(2 )

times (218 + 3)

product uzn(236) + 3 uzn(218) + urn(218 + 3)

Note that we now take this product mod 230 nence:

ur

il = 3 ur, (moa 218) (2)

ul

Nl (I3 ur, (2-18)] +ur  + 3 uzn) (mod 218)

where [.] indicates integer part of .

=u£

un+1.

18 o
) + ur, . (27)

n+1 (2
A PDP-1 implementation of equation (2) can generate a random
number every 145 psecs, If these numbers were being generated

at highest speed, the series would repeat every (145 x 10 ) X 234
= 2,490,000 seconds or a "period" of about 28 days. This is
probably sufficient low frequency performance. If the reader

is not satisfled with this, he can obviously extend this procedure
to any larger value of b with correspondingly slower repetition
rates. The actual computer program to implement equation (2)

is quite short and is shown below.
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u1£n+1

U

called by "jsp random"

returned in ac

returned in io

random,

I',
uln,
urn,
urni,
t1,

Note that

dap
law
mul
scr
dio
tad
dac
law
mul
scl
scl
tad
dac
lio
dio
Jmp

g
1
8
g

bitr has a period 2

r *
3

urn

1s

urnli /form urn new
urn /urn plus overflow bits of above
t1 '

3

uén

Os

8s

t1

uln /form ufn new
urnl

urn

-2 hence if only a few bits

are to be used from the random number, they should be taken
from the high order end of U, -

* a two's complement arithmetic machine is assumed.
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3., Content of the Analog Tape

As the Gaussian numbers were generated on the PDP-1, they

were D-A converted at a rate of 6 MS/sample and written on the
analog magnetic tape at 15"/sec. These samples from a 20-min,
record at 15"/sec on track 2 of the tape. On track 1 of the
tape is a recording of "zero," which may be used to compensate
for errors caused by transport flutter. On track 3 of the tape
a + 1v control level is recorded which marks those data segments
which have been read back (A-D converted) into the PDP-1 and
analyzed.

The tape can be played back at any available speed, for instance
1-7/8"/sec, in which case each sample lasts 48 msec and the
record is 2 hr. 40 min, in length.

B. ANALYSIS

A 15-second segment of the analog mag tape (about 2500 samples)
was read back into the PDP-1 through the A-D converter and the
reSulting numbers were analyzed to determine how c¢losely they
approximated Gaussian "white" samples.

1. Measurement of Central Moments

A program was written to calculate Esk, Zskz, Zsk3, ete., for

the 2500 samples S, . These numbers were then converted to scaled
(unit variance) central moments for comparison with the scaled
central moments of a Gaussian distribution. The results were

as follows:
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Moment )
st nd rd uth th 6th

1 2 3 5
SAMPLES 0 1.0 -.05 +43.11 -.3 +14.9
GAUSSIAN 0 1.0 0.0 3.0 0.0 15.0

Thus the first six moments of the samples are in excellent agree-
ment with the Gaussian distribution.

2. High-Freqguency Power Spectrum

The autocorrelation function Rxx(r) was calculated for shifts -
corresponding to O, 1, 2, ...25 sample times. The autocorrelation
function was assumed to be zero for larger shifts r, and the
Fourier transform of this Rxx(r) was taken. This procedure should
yleld a close approximation to the power spectrum of the samples
for high frequencies, but very poor results for low frequencies.
If the samples were really 'white" (independent) then their power
spectrum should be

1n® (omf * 6Msec)

Sxx(f) =2
(orf * GMsec)?

A plot of both the sin2 function and the experimentally obtained power
spectrum are given in Fig, 1. Note that there is excellent agreement
between the two at high frequencies, where the algorithm used was

a valid approximation., From this test we may conclude that the

power spectrum is that of white samples for high frequencies; we
~cannot make any statements about the low frequency power spectrum.



3. Low Frequency Power Spectrum

To investigate the spectral power at low frequencies, a set

of 100 digital filters were programmed whose impulse responses
were sin 2mnt/T and cos 2mnt/T where T corresponds to 2500
‘sample times and n = 1, 2,...100.

The digital filter corresponding to a cos wt impulse response
was

 H,(z) = L= Z cos W —— , where Z represents a unit delay.
1 - 2Z cos W+ Z

The sin wt filter was

HS(Z) — Z sin w
1 - 22 cos w + Z

2

Using the sample values as an input to these filters, we see by

a simple algebraic manipulation that the outputs of these filters

at t = T are the Fourier cosine and sine coefficients, respectively,

of the input sample record. Summing the squares of the sine and
~“~eosinewcoefficients~offthe fitters-at-w provides the -amount of

power at w. At very low frequencies, this should be constant.

_ To reduce the 1afge_statistica1 variation of this process, the
results were averaged over bands of 1 2/3 cps with the following
results: ’

0-1 2/3 eps 1 2/3-3 1/3 cps 3 1/3-5 cps 5-6 2/3 cps

Relative
power b.16 5.69 '3.69 4,75
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The 14% variation in these results is not statistically sig-
nificant; the standard deviation of this measurement (assuming
Gaussian white noise input) is 25% due to the small number of
samples. Within the limits of resolution for 2500 sample points,
the samples approximate the Spectrum of white Gaussian samples
down to D.C.

Conclusion

Our analysis of the samples read back from analog tape has
verified that the contents of the tape provide a very good
approximation to white Gausslan samples: this tape should
provide excellent results for anyone whose experiment requires
Gaussian white noise.
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